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1.0 Project Description 
 
Our goal was to advance the use of active network technology to build networks, 
systems, and applications that tolerate faults and denial-of-service attacks. Active 
networks allow high-level functionality to be embedded in the network, improving 
the network's ability to detect and react to failures and attacks. Rather than 
provide generic fault-tolerant protocols or middleware, the network can handle 
attacks and faults in an application-specific fashion. We call this embedding of 
application-specific fault handling application-enhanced fault tolerance. We 
pursued three main research thrusts: 
 

1.1 Local Resource Management.  
 
Each node of an active network contains resources that legitimate applications 
can exploit, but that malicious applications can attack. Faults and denial-of-
service attacks can be viewed as a resource allocation and scheduling problem. 
As part of our research we developed techniques for accurately accounting 
for all of a node's resources, and scheduling algorithms that allocate multiple 
resources to the code in a meaningful way. 
 

1.2 Distributed Terrain Navigation.  
 
This application supports the collection of terrain data from servers, and its 
dissemination to clients that are navigating or visualizing the terrain. The system 
embeds terrain-navigation-specific functionality into the network, enabling the 
system as a whole to tolerate denial-of-service attacks and faults better. 
 

1.3 Network-Resident Storage.  
 
We investigated the benefits of persistent storage within the network. The 
resulting network-resident storage system has several benefits over existing 
architectures, in terms of performance, fault tolerance, and resistance to 
attacks. Many distributed storage system functions, such as data replication, 
reconstruction, and synchronization are also best handled in the network 
because they involve filtering and merging network traffic, thus also improving 
the system's overall performance. 
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2.0 Right-Triangulated Irregular Networks 
 

2.1 Introduction 
 
We describe a hierarchical data structure for representing a digital terrain (height 
field) which contains approximations of the terrain at different levels of detail.  
The approximations are based on triangulations of the underlying two-
dimensional space using right-angled triangles.  The methods we discuss permit 
a single approximation to have a varying level of approximation accuracy across 
the surface.  Thus, for example, the area close to an observer may be 
represented with greater detail than areas which lie outside their field of view.  
We discuss the application of this hierarchical data structure to the problem of 
interactive terrain visualization.  We point out some of the advantages of this 
method in terms of memory usage and speed. 
 
In this report we describe a method for approximating a surface which is 
presented to us as a two-dimensional array of height values.  We assume that 
the height value in location ji, of the array is the true height of the surface at 
location ji yx ,  where ix  and jy  are easily derived from the indices i  and j   
Thus we ignore questions of error in the input.  For our purpose, the surface is 
defined by the values in the height array.  Of course, this leaves most of the 
surface, those points with yx,  coordinate not equal to ji yx , for some ji,  
undefined.  We make no assumptions about these intermediate points.  We 
measure the goodness of our approximations only against the elevations in the 
array. 
 
Such surface representations are common and can be quite large.  For example, 
a 10 meter resolution 7.5 minute digital elevation model (DEM) of Mount Rainier, 
Washington has 977 x 1405 = 1,372,685 data points.  Combining several of 
these map sheets, which is necessary, for example, in accurate watershed 
calculation, can result in arbitrarily large data sets. 
 
Computations involving such data sets are very expensive.  Both memory and 
time used by the analysis algorithm can be prohibitively large.  In such a case, 
we cannot use the entire surface representation.  Either the surface must be 
subdivided into manageable pieces, which only works if the analysis can be 
localized to these pieces, or we must use an approximation to the surface in 
place of the original.  Of course, the approximation should be constructed so that 
the answers we obtain in analyzing it approximate the answers we would obtain 
for the true surface. 
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Surface approximation of regular gridded DEMs typically possesses one of two 
forms.  Either the approximation is itself a regular gridded DEM, a regular sub-
grid of the original data, or it is a triangulated irregular network (TIN), a possibly 
irregular subset of the original data points whose projection into the −yx, plane is 
triangulated. 
 
The approximation form we describe in this paper lies somewhere between the 
regular sub-grid and the irregular TIN.  It is more regular than the TIN and more 
flexible than the sub-grid.  Like the TIN, it is a triangulated subset of the original 
data points, but, unlike the TIN, the subset is not arbitrary.  The subset is such 
that all triangles are right angled and isosceles.  Consequently, we call this form 
of approximation a right-triangulated irregular network (RTIN). 
 
The main benefit of the RTIN approximation is not in providing a single 
approximation to a surface, but rather in providing a framework of many 
approximations at varying levels of detail. 
 
A given approximation may be sell suited to one type of approximation but not 
another.  An approximation that represents ridge lines very accurately may not 
be the best approximation for determining wildlife habitat.  In order to form an 
appropriate approximation to the surface, we need to know for what purpose the 
approximation is intended.  It is time consuming and often impractical to create 
and store an approximation for each intended application.  Often a better solution 
is to devise a general framework for approximation that can yield approximations 
tailored to particular applications.  The problem then becomes calculating the 
appropriate approximation from the framework.  Extracting an approximation 
from an existing framework has the potential advantage of providing tailor-made 
approximations much fore rapidly than constructing a suitable approximation 
from scratch.  Of course, this works well only if the framework can provide an 
appropriate approximation quickly.  This is critically important when many 
different approximations are required in rapid succession. 
 
The framework we propose in this report it’s a hierarchy of approximations.  It is 
a hierarchy in that the framework contains a range of representations, from 
coarse to fine. However, the representations are not segregated.  The hierarchy 
can provide a single approximation that mixed coarse and fine level 
representations.  This allows us to obtain high levels of detail in certain regions of 
the surface without forcing us to represent the entire surface at this high 
resolution.  For example, in order to accurately approximate elevation, 
mountainous regions may require much finer detail than flat plains. 
 
An additional benefit to having the entire hierarchy of approximations is that it 
can make tasks such as point location faster than they would be if one had only a 
single approximation. 
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The disadvantage to keeping a hierarchy of approximations is that it requires 
more storage than a single approximation.  One of the main goals of this work is 
to demonstrate a practical and space efficient approximation hierarchy.  Our 
implementation of the RTIN hierarchy requires less than 14 bytes per original 
data point.  This includes tow bytes for the height value itself.  Though seven 
times more expensive than the original data set, the hierarchy provides an 
extensive range of approximations.  
 
To illustrate the utility of the RTIN hierarchy, we describe its implementation for 
interactive visualization of a surface.  The goal of interactive visualization is to 
show what a user would see as they “fly” or “walk’ over the surface.  The problem 
is that the surface is too detailed to render at full resolution at a reasonable 
speed.  Thus, the surface must be approximated in order to reduce the time 
needed to update the display.  A single approximation, independent of the eye 
position, could be used, but the resulting image may be unacceptably coarse in 
areas close to the eye.  Our approach is to adapt the approximation to the 
location of the eye so that regions close to the viewer are a high resolution while 
distant or non-visible regions are more coarsely represented. 
 
The demand for varying levels of detail within one approximation must be 
answered carefully.  Areas of high detail must match with adjacent areas of low 
detail in such a way that the surface remains “continuous”.  Discontinuities are 
very noticeable in interactive applications. 
 
Interactive visualization is a good test of our hierarchy since it requires many of 
the desired properties:  we must be able to choose and appropriate 
approximation rapidly; the approximation must allow different levels of detail at 
different locations on the surface; and the surface must be a continuous surface 
after interpolation (gaps in the surface can be glaringly obvious). 
 
The focus of this paper will be on describing the RTIN hierarchy and the data 
structure used to implement it.  Later sections of the paper will detail the 
performance of the hierarchy both as a solution to the interactive visualization 
problem and as a way to represent a single (non-hierarchical) surface 
approximation. 
 
We start by reviewing a portion of the large body of work that has been done on 
surface approximation.  We then review the two popular surface representations, 
the sub-grid and the TIN, and describe hierarchies based on these 
representations.  This acts the stage for our discussion of the RTIN hierarchy of 
approximations. 
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2.2 Related Work 
 
A great deal of work has been done on the approximation of surfaces, and, in 
fact, on the particular problem of multi-resolution surface modeling of which 
hierarchies are one type.  A recent survey by De Floriani, Marzano, and Puppo 
discusses many of the advances in this field.  This survey does not refer to a 
large body of more recent work that has appeared in SIGGRAPH96 and 
EuroGraphics96, both of which had sessions on multi-resolution surface 
modeling.  A recent tutorial by Puppo and Scopigno covers this more recent work 
as well as a wide range of surface simplification techniques. 
 
The most relevant work to our approach that has appeared in the surface 
approximation literature is the work by Lindstrom et al and Puppo.  Both 
independently discovered hierarchies similar to the one discussed in this paper.  
We discuss and compare their approaches to ours. 
 
Another source of related work comes from the study of general lattice 
structures.  Bell et al. cite work on crystal lattice structures by Subnikov in 1916 
and Laves in 1931 that defined various planar partitions including the one upon 
which our hierarchy is based.  These  partitions have been studied as a means of 
addressing spatial regions with application to image encoding and adaptive mesh 
generation for finite element solvers in two and higher dimensions.   Hebert 
appears to be the first to describe non-uniform versions of the particular partition 
discussed in this paper, though the concept is closely related to the quad-tree 
data structure discussed by Samet and the restricted quadtree of Von Herzen 
and Barr. 
 

2.3 Sub-grid and TIN 
 
Approximations of height data typically come in one of two types: sub-grid or TIN.  
A sub-grid is of the same form as the input array of height values.  It is an array 
of height values at regularly spaced x  and y  coordinates of a height value from 
its array indices.  Thus, the only storage needed is for the height or z values of 
the sample points.  To obtain the height at yx,  coordinates not in the sample set, 
one uses some form of interpolation.  In fact, what is often done is that the four 
sample points forming the smallest square containing the yx,  position are used to  
determine the height at yx, via bilinear interpolation.  The regular spacing of the 
sample points makes it easy to determine the closest sample points to a given 

yx, position.  Alternatively, one might choose to use linear interpolation based on 
a triangulation of this smallest square (arbitrarily picking one of the square’s two 
diagonals to split it into two triangles). 
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The sample points of a Triangulated Irregular Network (TIN) are an arbitrary 
subset of the original data points.  In order to specify this subset, the 

yx, coordinates (i.e. the indices in the input array) of each sample point in the 
TIN must be stored explicitly, in addition to the z value.  The sample points, 
without their height component, are triangulated (typically using a Delaunay 
triangulation) and linear interpolation is used to obtain the height at an arbitrary 
point ( )yx,  from the heights of the vertices of the triangle which contains the 
point. 
 
The advantage of the TIN is that the sampling can be non-uniform: large 
featureless regions can be sampled at a coarser resolution than regions with a 
great deal of variation.  The disadvantage is that a TIN requires more storage for 
the same number of sample points: a 3:1 ratio if yx, and z values require the 
same precision.  The storage disadvantage becomes worse if one requires 
adjacency information for the triangulation; if for example, one needs the ability to 
traverse the surface approximation from triangle to adjacent triangle. 
 
The factor of three differences in storage requirements has led to an unfavorable 
view of TINs.  Kumler argues that to achieve a certain degree of accuracy in the 
representation of a height field, sub-grids require less storage space than TINs.  
However, he then states, “I did not expect these results.  My intuition led me to 
believe, and I continue to believe, that the irregular TIN model is, in general, a 
more efficient method for representing an irregular natural surface.”  He then 
goes on to explain his conviction by claiming that methods to construct more 
efficient TINs will be developed in the future.  Our results comparing error 
measures to space usage for sub-grids and TINs may shed some light on this 
issue. 
 

2.4 Sub-grid and TIN hierarchies 
 
Both sub-grid and TIN approximations may be organized into hierarchies.  A 
hierarchy of sub-grid approximations is obtained by varying the spacing of the 
regularly sampled grid points.  For example, one level of the hierarchy may 
contain every other sample point from the input array while a coarser level may 
contain every fourth sample point.  Typically, each level of the hierarchy is a 
regularly sub-sampled approximation of the next finer level.  Thus, the amount of  
storage needed for the entire hierarchy is just the amount needed for the finest 
level of approximation.  The price of such small storage is the rigidity and 
uniformity of the sampling pattern. 
 
A TIN hierarchy allows varying levels of detail within an approximation at the 
expense of more storage.  There are several hierarchies based on irregular 
triangulations.  One may roughly divide them into those that preserve the 
boundaries of coarse triangulations in going to finer triangulations, and those that 
do not.  In the first case, the hierarchy is organized in a tree structure; each node 
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represents a region, and the children of a node represent the regions into which 
the node’s region is partitioned in going from one level to the next finer.  
Refinement is typically performed by choosing within each region a point from the 
original input data, adding it to the set of sampled points, and re-triangulating 
(maintaining the previous boundaries).  Such a scheme tends to create long, thin 
triangles which may provide a less accurate approximation than shorter-edged, 
larger-angled triangles.  On the other hand, any level of detail can be achieved in 
one area of the triangulation without affecting other areas.  In terms of the tree 
structure, any sub-tree containing the root represents a valid surface 
approximation. 
 
In the second case, one can choose to re-triangulate at each level using, for 
example, Delaunay triangulation.  In this case, it is not in general possible to 
refine a particular region independent of other regions, i.e. combining pieces from 
different levels of the hierarchy is difficult.  DeBerg and Dobrindt recently showed 
how a hierarchy of Delaunay triangulations which shows local refinement can be 
constructed.  This is accomplished using a more complicated structure than the 
simple tree used in the first case.  DeBerg and Bobrindt cite memory usage of 
132 bytes per data point. 
 
Our goal is to provide a hierarchy of surface approximations which is a 
compromise between the sub-grid and the TIN approximations.  We hope that a 
more regular “grid-like” TIN will combine the sub-grid’s advantage of smaller 
space per vertex with the TIN’s advantage of local adaptability to terrain. 
 

3.0 RTIN Hierarchy 
 
Our hierarchical surface representation contains partitions, called RTIN 
partitions, of the two dimensional square into right-angled, isosceles triangles.  
Such partitions have been studied in relation to crystal lattices, image encoding, 
and in fact, geographic visualization systems.  The partitions contained in the 
hierarchy are defined inductively as follows.  The partition composed of two  
triangles formed by dividing the square from northwest to southeast corner is the 
coarsest partition in the hierarchy (i.e. the one containing the largest triangles).  
From a partition in the hierarchy, a new, more detailed partition may be formed 
by splitting any one of the non-terminal triangles in the partition, where a non-
terminal triangle is one which is larger than some fixed threshold depending on 
the resolution of the underlying height field.  A triangle T , is split by adding an 
edge from its right-angled vertex to the midpoint to its hypotenuse.  The resulting 
partition may be non-triangular meaning that the new vertex introduced at the 
midpoint of the hypotenuse may lie on the border of a triangle  R  (T ’s neighbor 
across the hypotenuse) turning  R  into a quadrilateral.  This represents a 
problem when using the partition to create a continuous surface via linear 
interpolation.  Each vertex in the partition has a height value defined by the 
height field.  Since  R  is a quadrilateral, linear interpolation over  R  is not well-
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defined, and performing linear interpolation using R ’s original three vertices may 
cause gaps in the surface.  To avoid this problem, we continue or propagate the 
split into R .   If R is larger than T  then the hypotenuse of T  forms a leg of R  and 
we first split R (perhaps propagating this split) and then split the resulting triangle 
which shares its hypotenuse with T .  If R  is the same size as T  we need only 
split R (no further propagation is necessary).  See figure 1. 
 
 

 
 

Figure 1:  Splitting triangle T  
 
Propagation means that a single split operation can cause more than one triangle 
to split.  However, splitting a triangle T cannot cause a triangle smaller than T to 
be split.  Thus, only a finite number of triangles will be split in a single split 
operation, and the operation is guaranteed to terminate.  In fact, at most two 
triangles of each size equal to or larger than T and no triangles smaller than T  
will split as a result of splitting T .   
 
The most detailed partition in the hierarchy is one in which no triangle may be 
split, i.e. all triangles are terminal.  The most detailed partition is uniform: every 
triangle is the same size.  The height of the 
 ( )ji, th grid point is the height of the ( )ji, th sample point in the height array.  
The integer k  (or, equivalently, the threshold defining the terminal triangle) is 
chosen so that the grid is large enough to contain the height array. 
 
If extended to cover the plane, such a uniform partition is called a [ ]28.4  Laves 
net named by Bell, Diaz, Holroyd, and Jackson after F. Laves.  The name lists 
the degree of the vertices of the atomic polygon within the partition, in cyclic 
order around the polygon.  In this case, the right angled vertex has degree 4 and 
the two other vertices both have degree 8. 
 
Other Laves nets which may be used as the basis for single shape hierarchies 
are the square [ ]44 , the equilateral triangle [ ]36 , and the 30-60 right triangle 
[ ]12.6.4 .  See figure 2.  These nets all share the crucial property that they are 
infinitely refinable using similar polygons:  a given polygon in any net can itself be 
partitioned using polygons of the same shape. 
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Figure 2:  Pieces of Laves nets of type [ ]44 , [ ]36 , [ ]12.6.4 ,and [ ]28.4  
 
Unlike a Laves net, a partition may be non-uniform.  Only certain Laves nets can 
form the basis of non-uniform partitions.  For partitions based on the square of 
equilateral triangle net, refining one region forces all other regions in the partition 
to be refined.  This refining is forced in order to maintain the basic shape of the 
regions in the partition.  For example, refining one square in a square net 
introduces new vertices on the edges of adjacent squares which forces these 
squares (now pentagons) to be refined which forces further refinement until the 
partition is uniform.  The equilateral triangle net behaves in a similar manner.  
Thus these nets, without special compensation for non-similar regions, cannot be 
the basis of a non-uniform partition.  As mentioned earlier, refining (of splitting) a 
triangle affects at most two triangles of each size.  See figure 3. 
 

 
Figure 3: Non-uniform partition based on the [ ]12.6.4  Laves net 

 
Unlike a Laves net, a partition may be non-uniform.  Only certain Laves nets can 
form the basis of non-uniform partitions.  For partitions based on the square of 
equilateral triangle net, refining one region forces all other regions in the partition 
to be refined.  This refining is forced in order to maintain the basic shape of the 
regions in the partition.  For example, refining one square in a square net 
introduces new vertices on the edges of adjacent squares which force these 
squares (now pentagons) to be refined, which forces further refinement until the 
partition is uniform.  The equilateral triangle net behaves in a similar manner.   
Thus these nets, without special compensation for non-similar regions, cannot be 
the basis of a non-uniform partition.  The [ ]12.6.4  (30-60 right triangle) partition 
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and the [ ]28.4  (isosceles right triangle) partition do not suffer this limitation.  As 
mentioned earlier, refining (or splitting) a triangle affects at most two triangles of 
each size in the [ ]28.4  partition.  In the [ ]12.6.4  partition, the number of triangles 
affected of each size equal to or larger than the triangle initially split is at most 
12.  See figure 3.  
 
Three properties favor the [ ]28.4  partition for hierarchical representation of 
surface approximations.  First, it is a triangular subdivision which means that 
height values in the interior of the triangle can be linearly interpolated from the 
height values at the vertices of the triangle in an unambiguous way.  The benefits 
of linear interpolation over other methods of interpolation (such as bilinear or 
inverse-distance weighting) are speed and simplicity.  For 3D visualization, linear 
interpolation is supported in hardware on some machines, making it the only 
reasonable interpolation scheme for large numbers of triangles. 
 
Second, the vertices of a uniform [ ]28.4  partition are equally spaced grid points, 
in contrast to a [4.6.12] partition.  Thus, each vertex represents a sample point 
from the original data set, and every point from the data set is included in the 
most detailed partition. 
 
Third, one area of the partition can be refined, while maintaining the “no gap” or 
surface property, without affecting a large number of regions.  Refining or 
splitting a triangle affects only a small number of other triangles in contrast to the 
[ ]44  or [ ]36  partitions. 
 

3.1 Data structure 
 
The previous section introduced RTIN partitions.  We now discuss how these 
partitions may be represented in a data structure both individually and collectively 
as a hierarchy.  The general idea is suggested by the definition of the RTIN 
partition:  since each triangle may be divided into two similar pieces, a partition is 
represented by a binary tree.  In particular, each (triangular) region in the 
partition is represented by a leaf in the binary tree that represents the partition. 
 
The root of the tree represents the initial square (the only case in which the 
region associated with a node is not a right triangle).  The children of the root 
correspond to the regions obtained by dividing the square along its northwest-
southeast diagonal. The left (right) child corresponds to the triangle containing 
the southwest (northeast) corner.  In general, the children of a node with 
triangular region t correspond to the triangles obtained by “splitting” T from the 
midpoint of its hypotenuse to its right-angled vertex.  The left (right) child is the 
triangle to the left (right) of this split (looking from the midpoint to the vertex).  
See figure 4. 
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This establishes a labeling scheme for the triangular regions in a RTIN partition.  
The label of a region is a description of the path from the root to its corres-
ponding node in the binary tree.  The path description is the concatenation of the 
labels of the edges on the path from the root to the node, where an edge is 
labeled 0 (1) if it leads to a left (right) child.  An example of a RTIN partition and 
its representative binary tree are shown in figure 5. 
 

 
 

Figure 4:  The possible triangle orientations and their left and right 
children.  Left and right are denoted by 0 and 1 respectively. 

 
 

 
 

Figure 5:  The binary tree representation of a RTIN partition. 
 
Any single partition corresponds, as in figure 5, to a binary tree.  Thus, a RTIN 
surface approximation can be represented by a binary tree and the height of 
each of the triangle vertices from the input elevation model.  The structure of the 
tree allows us to calculate the ( )yx,  coordinates of the vertices of a triangle from 
its label in the tree.  This is the advantage of the RTIN structure over a general 
TIN.  Neither the coordinates nor the label need to be explicitly stored.  Contrast 
this with the general TIN.  Neither the coordinates nor the label need to be 
explicitly stored.  Contrast this with the general TIN which must store the (x ,y) 
coordinates (or indices) of the vertices of the triangles it contains.  In this way, 
the RTIN resembles the regularly sub-sampled grid.  In the sub-grid, the x, y  
coordinates of a point can be calculated from the point’s indices in the array of 
height values.  In the RTIN, the yx,  coordinates of the vertices of a triangle can 
be calculated from the triangle’s label.  Both the point indices in the sub-grid and 
the triangle label in the RTIN are addresses into the structure.  They are not 
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stored in the structure.  Unlike the regular sub-grid, the RTIN allows non-uniform 
sampling; some regions may be more densely sub-samples than others.  In this 
way the RTIN resembles the general TIN. 
 
Determining the coordinates of the three vertices of a triangle from its label is 
straight forward.  The label describes a path in the binary tree representing the 
surface.  At each step in this path, as one descends from the root, one can 
construct the vertices of the left or right child triangle from the vertices of the 
parent. If ∆ ( 321 ,, vvv ) is the parent triangle (vertices are listed in counter-
clockwise order with 3v the right-angled vertex) then the left child is ∆ ( mvv ,, 13 ) 
while the right child is ∆ ( mvv ,, 32 ) where ( yx mm , )(the yx, coordinates of m ) are 
the yx, coordinates of the midpoint of the line segment 21vv and the z coordinate 
(i.e. height value) of m is obtained from the input array location ( xm , ym ).  We 
assume that the x, y coordinates of the vertices are integers and represent 
indices into the input array.  If not, they can be scaled and rounded to the 
appropriate integral range. 
 
A straightforward implementation of this binary tree structure for a single surface 
approximation is inefficient in its use of space.  Each node requires two pointers 
to its children and the height of its vertices must be stored as sell.  This, along 
with the fact that there are twice as many nodes in the tree as triangles in the 
approximating surface, makes the RTIN method of single surface approximation 
more space intensive than a TIN representation. 
 
The advantages of the RTIN become more apparent when one wishes to 
represent a hierarchy of surface approximations rather that just a single 
approximation.  In some sense, the binary tree representation of a RTIN partition 
is tailor-made for hierarchies since, if it represents a partition at a particular level 
of detail, the binary tree that corresponds to the most detailed RTIN partition of 
the input elevation model. 
 
Of course, to obtain a surface approximation from the binary tree, we also need 
the height values of the vertices of all triangles in the approximation.  For this we 
store the original input array of elevations. 
 
For the price of this one RTIN surface approximation (albeit the most expensive), 
we obtain a representation of all RTIN surface approximations.  Methods for 
extracting a particular surface approximation from this hierarchy are described 
later. 
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3.2  Reducing Space Usage 
 
This section describes issues concerning the space used by the hierarchy and 
how that space may be reduced. 
 
If the original input was a k2  +1  x k2 +1 array, the binary tree representing the 
hierarchy is the complete binary tree of depth k2 + 1.  Each leaf of the tree 
represents a triangle that is half of the input grid square.  In this case, it is much 
more space efficient to store the binary tree as an array where the label of a 
node, treated as the binary representation of an integer, determines the node’s 
location in the array.  The problem of having, for example, labels 0 and 00 both 
representing the same integer can easily be solved by appending a 1 to the node 
label to form the array index.  The addressing scheme obtained in this way 
corresponds to the typical implicit array representation of a binary heap.  By 
using the array representation, we eliminate child pointer storage. 
 
If the input does not have size k2 +1 k2× + 1 but rather size hw× (where w  and 
h  are less than k2 + 1 but either w or h  are greater than 12 −k + 1) then a 
complete binary tree of depth k2 + 1 contains some nodes that do not correspond  
to triangles with vertices that are grid locations.  The triangles represented by 
these leaves do not “cover” the input array (i.e.  their projection into the yx, – 
plane does not intersect the range of the indices of the input array).  They are 
invalid.  A more complicated indexing scheme of the implicit array representation 
can be used in this case.  The basic idea of this scheme is to follow the implicit 
array representation but to calculate which of the nodes in the binary tree 
represent invalid regions, and to offset the implicit array index of a node by the 
number of invalid regions whose implicit array index precedes it.  The space 
requirement is then reduced from being proportional to ( )212 +k  to being 
proportional to wh . 
 
Since these space saving mechanisms eliminate the need for a node to store 
pointers to its children, one might well ask what information is stored in the tree, 
since the pointer structure and the height values were the only pieces of 
information required to represent a single surface approximation. 
 
The only vital piece of information that must be stored in the nodes of the 
hierarchy is an indication of whether or not the triangle is part of the 
approximation surface.  In the single surface approximation, the fact that a node 
was a leaf of the binary tree indicated that it represented a region in the 
approximation.  In the hierarchy, which is used to represent many different 
approximations, this can be accomplished using a single bit per node which 
indicates whether or not the node’s triangle is a part of the approximation.   
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The total storage of a ( k2 +1) x ( k2 + 1) image is the amount used for the array of 
height values (( k2 +1) x ( k2 + 1) words) plus one bit for every node in the tree  
( 122 +k  – 1 bits). 
 
This representation, however, is too sparse to be of much use for any algorithm 
which operates on the surface approximation.  One might reasonably demand 
that each node contain some representation of the error of its triangle in order to 
determine how well the approximation fits the true surface, and in order to 
calculate appropriate single approximations from the hierarchy. 
 
One may also demand the ability to “walk” from one triangle of the surface to a 
neighboring triangle of the surface.  That is, given the address of a triangle, 
calculate the addresses of the (at most) three triangles that share an edge with it.  
We describe in the next section how this may be accomplished using a additional 
three bits of storage per triangle. 
 

3.3 Neighbor Calculation 
 
Often the algorithms one needs to execute on the approximation surface require 
the ability to traverse the surface from triangle to adjacent triangle.  For example, 
one algorithm for calculating the watershed of a stream performs a hill-climbing 
operation which follows a path of steepest ascent from triangle to adjacent 
triangle.  In order to accomplish this, the algorithm needs to determine the 
neighbors of any given triangle.  In particular, one needs a function that, given 
the label of a triangle, can calculate the label of its adjacent triangles. 
 
In order to describe this function let us number the vertices of a triangle in 
counter-clockwise order from 1 to 3 so that vertex 3 is the right-angled vertex.  
Define the i -neighbor of a triangle as the neighbor that does not share the 
triangle’s vertex i  (see figure 6).   
 

 
 
 
Figure 6:  The i -neighbors of a triangle.  In this case, all neighbors are the 

same size as the triangle.  The numbers within the inner triangle are the 
vertex numbers of the inner triangle. 
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The same-size i -neighbor of a triangle t is the triangle’s i -neighbor in the 
uniform partition that contains t .  The same-size neighbor may or may not be a 
part of the approximation surface.  The function which finds the i -neighbor of a 
triangle first finds the same-size i -neighbor of the triangle and then uses some 
extra information stored with the triangle to determine the true i -neighbor.  The 
extra information is a bit which says whether or not the i -neighbor is the same 
size as the triangle or not.  If the bit indicates that the i -neighbor is not the same 
size as the triangle then the i -neighbor must be smaller if i = 1, 2 or larger if i = 
3.  Alternatively, one may avoid the extra 3 bits of storage by examining the 
surface bit of the same-size neighbor and its parent (or child). 
 
The following recursive equations calculate the labels of the same-size neighbors 
of a triangle specified by its label.  ( )tNi  is the same-size i -neighbor of t .  The 
symbol λ  is the (empty) label of the root.  The symbol 0/  represents “no 
neighbor”.  The function o  is concatenation with the understanding  

00 o/  = 10 o/  = 0/  
      
     ( )λ1N = ( )01N = ( )11N = 0/     ( )λ2N = ( )02N = ( )12N = 0/      ( )λ3N =0/  
            ( )01 pN = ( )pN3 o1                     ( )02 pN = 1op        ( )03N =1 
                    ( )11 pN = 0op               ( )12 pN = ( ) 03 opN        ( )13N =0 
                                                                           ( )03 pN = ( ) 12 opN  
                                                                            ( )13 pN = ( ) 01 opN  
 
An example of the use of these equations is given in Figure 7. 
 
 
 

 
 

Figure 7:  Use of the recursive neighbor equations to calculate the 
2-neighbor of 0111. 
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A recursive algorithm based on these equations is fast enough in nearly all 
situations.  Nonetheless, it may be of interest to note that these calculations may 
be performed using a small number (unrelated to the length of the label) of 
arithmetic and bitwise logical operations, provided the label is short enough to fit 
in a computer word (see the C-code in Figure 8).  
 
The code works by first reducing the problem to calculation ( )tN3 ; the 1-
neighbor, or 2-neighbor of a triangle t  is simply the parent of the 3-neighbor of a 
child of t .  From the recursive equations, if uvwt =  where v  is either 00 or 11 
and w  is in the regular language [ ]*00,01  then ( ) vwutN =3  where x  is the bitwise 
compliment of x .  This is the property exploited by the sample C-code.  
Complimentation of vw  is accomplished by a single addition. 
 

3.4 On-the-fly Surface Approximation 
 
Using the RTIN hierarchy defined in the previous section, we can create an 
algorithm that quickly constructs a surface approximation.  Since the application 
we have in mind is interactive visualization, the speed at which the approximation 
can be constructed is of prime importance.  The construction time together with 
the rendering time determines the number of scenes that can be drawn per 
second.   
 
There are, essentially, two approaches to constructing an approximation from a 
hierarchy:  bottom-up and top-down.  Bottom-up starts with the finest, or most  
accurate, approximation and progressively relaxes it – letting a large triangle, for 
example, replace smaller triangles if the large triangle well-approximates the 
smaller ones.  Top-down starts with the coarsest approximation and 
progressively refines it.  Bottom-up works well in cases where the approximation 
is close to the finest approximation, but it must perform many relaxations in order 
to reach a coarse approximation.  Top-down quickly reaches coarse 
approximations, but may waste time refining very coarse approximations if the 
desired approximation is very fine. 
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Figure 8: C-code for fast triangle neighbor calculation 
 
 
We use a top-down approach because the amount of work done to construct an 
approximation in a top-down fashion is proportional to the number of triangles in 
the approximation.  Thus, reducing the number of triangles in the approximation 
speeds up the calculation of the approximation, as well as decreasing the time to 
draw the approximation.  This assumes that the time to draw an approximation 
decreases as the number of triangles in the approximation decreases.  This 
assumption is supported by our experimental results. 
 
Given our choice of top-down method, we must decide how to choose the 
triangles to refine.  Again, there are essentially two choices:  thresholding or 
prioritized refinement (though many variations of these two themes are possible).  
Prioritized refinement chooses to refine the approximation in the most poorly 
approximated parts of the surface until the approximation contains a certain 
number of triangles.  The single approximation results presented use a version 
prioritized refinement that is explained there in detail.  On the other hand, 
thresholding insists that the approximation everywhere satisfies some constraint. 
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The constraint may be as simple as that every point in the input data lies within 
ε  of the approximation, or it may be a more complicated constraint based on the 
eye position a desired visual fidelity.  In any case, the number of triangles 
produced in the approximation is not as tightly controlled as in prioritized 
refinement.  A surface may require few triangles to achieve the desired overall 
fidelity in certain cases, while requiring many in other cases.  Certainly, by 
decreasing the overall requirement, the number of triangles needed in the 
approximation decreases, but the control is not as precise as in the previous 
case. 
 
Either method may be used to achieve surface approximations.  Here we outline 
a method based on thresholding that is used in our implementation of an 
interactive visualization system.  An initial preprocessing phase allocates to each 
triangle a measure of how accurately it approximates the surface – the triangle’s 
error.  In our implementation this is the maximum over points “covered” by the 
triangle of the vertical distance from the point to the triangle.  The preprocessing 
phase also initializes the RTIN hierarchy.  After its completion, a triangle’s error 
need never be recalculated.  Other triangle specific information may be 
calculated and stored in the hierarchy at this time, for instance, the triangle’s 
surface normal, its display properties, etc.  This increases the space 
requirements of the hierarchy but may decrease the display time. 
 
The heart of the algorithm is an augmented depth-first search of the hierarchy 
that updates the surface approximation in response to movements of the eye 
position.  The depth-first search starts with the approximation being the two 
triangles represented by the two children of the root of the hierarchy (the binary 
tree representing the finest RTIN partition).  It visits each child of the root.  In 
general, if the search is visiting a node and the triangle that the node represents 
is not sufficiently close to the surface, then the depth-first search splits the 
triangle (which may cause many triangles to split recursively in order to avoid 
gaps in the surface) and then recursively visits the children of the node.  The 
recursion caused by a triangle split may split triangles whose nodes have not yet 
been visited by the depth-first search. If the depth-first search visits a node 
whose triangle has been previously split, it recursively visits the node’s children. 
 
The decision of whether a triangle is “sufficiently close to the surface” is based on 
both the error of the triangle and the distance of the triangle from the eye 
position.  In general, one may choose an inverse-distance weighting of the 
triangle’s error, the area that the projection of the triangle occupies on the display 
screen, or other measures.  One obvious common criteria is that triangles at the 
finest level of detail should not be refined. 
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Figure 9:  Maximum error versus number of points in approximation. 
Crater Lake data set. 

 
The precise function used to determine if a triangle is “bad” is not our main focus.  
We present results that call a triangle bad if the inverse weighting of its error is 
greater than some threshold; or if it is large and close to the eye position, e.g., 
within 700 meters of the eye position, any triangle that is not at the finest level of 
detail is bad. A more appropriate measure for interactive visualization might also 
include some measure of the visibility of the triangle.  For instance, triangles 
outside the field of view, no matter how poorly they approximate the surface, are 
not seen by the observer and, hence, should not be bad. 
 
Once the depth-first search creates the approximation, a second depth-first 
search traverses the hierarchy and draws the triangles that form the 
approximation. 
 

3.5 Experimental Results 
 

3.5.1 Single surface performance 
 
To construct a single surface approximation, we use a procedure similar to the 
general TIN construction method of Fowler and Little from 1979.  The procedure 
is iterative and greedy.  In each iteration, the point least well represented by the 
current approximation is added to the set of vertices, and the yx,  projection of 
the set is retriangulated (using a Delaunay triangulation) to form the next 
approximation.  In our case, we do not have the flexibility of adding an arbitrary 
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point to the current approximation.  We can refine an approximation only by 
splitting a triangle that is in the approximation,  However, we can, in spirit, mimic 
this greedy approach, by splitting the triangle that contains the least will 
approximated point, perhaps causing other triangles to split.  To implement this, 
we maintain a priority queue of the triangles in the approximation prioritized by 
their error and incrementally split the worst triangle. 
 
For both TIN and RTIN construction, the procedure attempts to reduce the 
maximum error in the surface approximation at each iteration.  It targets the point 
which has the current worst error, or the triangle which contains this point in the 
case of RTINs.  If, however, instead of desiring a small maximum error, one 
desires a small RMS (root mean squared) error, then the analogous procedure is 
to find the triangle with the worst RMS error or the point whose deletion most 
decreases the RMS error.  For TINs, finding the point that most decreases the 
RMS error is prohibitively expensive.  However, for RTINs, this greedy heuristic 
is rather simple to adopt: at each iteration the triangle with the maximum RMS 
error is chosen to be split. 
 
As one would expect, the maximum error in the surface decreases more rapidly 
as a function of the number of points in the approximation when we allow general 
triangles in the partition (the TIN approximation) as opposed to the more 
constrained RTIN approximation.  A sub-sampled DEM is the worst performer 
under this measure (figure 9). Note that we used linear interpolation to calculate 
the surface in each case.  The plots of the RTIN and TIN errors are scatter-plots.  
The points cluster so densely that they present the illusion of smooth curves.  
The plots show that, occasionally, adding a point to an approximation increases 
the maximum error.  This is a result of using a non-optimal algorithm to calculate 
the RTIN and TIN approximations. 
 
We obtain a similar result when we consider the RMS error as a function of the 
number of points in the approximation.  In this case, the RTIN algorithm chooses 
to split the triangle which has the largest RMS error (figure 10). 
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Figure 10:  Root mean squared error versus number of points.  

 Crater Lake data set. 
 
Even when we consider the maximum error as a function of the amount of 
memory required to store the approximations, the irregular triangulation or TIN 
still outperforms both the RTIN approximation and the gridded DEM 
approximation (figure 11).  We count only the space for the approximation itself, 
and we assume that the coordinate values can be stored in two bytes. 
 

 
 

Figure 11:  Maximum error versus memory usage. 



 

 22

 
In the case of the TIN, the amount of memory used is approximately 30 bytes per 
vertex in the approximation.  This counts the two bytes each for the yx,  and z  
coordinates and four bytes each for the, on average, six neighbor pointers of 
each vertex. 
 
For the RTIN, the storage required for each node in the binary tree is two bytes 
to hold the height of the midpoint of the hypotenuse and eight bytes for the two 
child pointers.  This is a single surface approximation; the leaves of the tree 
represent triangles in the approximation.  Thus, we do not need to store neighbor 
information in the nodes.  To calculate the neighbor of a triangle, we calculate its 
same-size neighbor and take the closest leaf to that neighbor (the neighbor itself, 
its parent, or its child).  The number of triangles in the approximation (i.e. leaves 
in the binary tree) is approximately twice the number of vertices in the 
approximation.  The total number of nodes in the tree is approximately twice the 
number of leaves.  Thus the RTIN uses approximately 40 bytes per vertex in the 
approximation. 
 
For the gridded DEM, the storage requirement is approximately two bytes per 
point in the approximation, since only the height values need to be stored. 
 
The one instance in which the TIN approximation does not achieve the best 
performance of the three is when the RMS error of the approximation is 
considered as a function of the memory used.  In this case, the gridded DEM 
achieves the best error for a given memory size (figure 12).  This result supports 
Kumler’s observations and, indeed, his error measures are similar to the RMS 
error measure.  That the gridded DEM produces small error may be largely 
attributed to the fact that its triangles are on average, quite small. 
 
The performance of the RTIN as a single surface approximation does not match 
the performance of the general TIN approximation scheme.  This will always be 
the case when performance is measured as a function of the number of points in 
the approximation.  There is some hope, however, that other means of storage 
can bring down the memory requirements of the RTIN to the point where it 
competes with the TIN on single surface approximations when performance is a 
function of the memory used.  For example, the labels of the triangles in the 
approximation may be hashed rather than stored in a binary tree.  This avoids 
allocating space for internal nodes that are extraneous in a single surface 
approximation. 
 
The data for the figures shown above are elevation data for Crater Lake West in 
southern Oregon.  The results are similar to those obtained for other areas such 
as Yakima, Washington; Tucson, Arizona; and Reno, Nevada.  We obtained 
these data sets and others from the U. S. Geological Survey.  Wee obtained the 
code that was used to produce the irregular TINs from Garland and Heckbert. 
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Figure 12:  Root mean squared error versus memory usage. 
Crater Lake data set. 

 
 

 
 
Figure 13:  The average time to construct and time to construct and draw a 

surface approximation of Mount St. Helens as a function of the error per 
distance tolerance.  The graph also shows the number of triangles (in 

1,000s) in the approximation. 
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3.5.2 Hierarchical Performance 
 
The rather poor performance of the RTIN structure in describing a single 
approximation is in contrast to its performance as a hierarchy for achieving 
multiple levels of detail in an interactive environment.  An interactive visualization 
system, called TopoVista, incorporating the ideas presented in this report may be 
downloaded from the TopoVista web site.  All experimental results presented in 
this section are from this implementation. 
 
The system on which we ran these experiments is an SGI Indigo2 with a High 
Impact graphics board and 128 megabytes of main memory, running IRIX 6.5.  
The program uses the OpenGL graphics package and OpenGL Utility Toolkit. 
 
We present results for a small elevation model (figure 13), Mount St. Helens (327 
x 467 data points), and a larger elevation model (figure 14), Mount Rainier East 
(977 x 1405 data points).  In both cases, we measured the time to construct a 
surface approximation, the time to both construct and display the approximation, 
and the number of triangles in the approximation.  We obtained these numbers 
by calculating the total time (and number of triangles drawn) to mover the eye 
position around the perimeter of the elevation model, looking toward the center, 
and then dividing by the number of approximation calculated during this circuit.  
We repeated the experiment for varying error per distance tolerances.  The 
tolerance specifies the vertical discrepancy, in meters, between the  
 

 
 
Figure 14:  The average time to construct and time to construct and draw a 
surface approximation of Mount Rainier East as a function of the error per 

distance tolerance.  The graph also shows the number of triangles. 
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Figure 15: Full detail, pre-1980 Mount       Figure 16: Full detail, post-1980 

 St. Helens (305K triangles).                      Mount St. Helens (305K triangles). 
 

         
Figure 17: Tolerance=1m per km.             Figure 18: Tolerance=1m per km 

(44,500 triangles).                                      (39,800 triangles). 
 

         
Figure 19: Tolerance=4m per km.             Figure 20: Tolerance=4m per km. 

(10,600 triangles)                                       (10,200 triangles) 
 
approximation and the original elevation model that is acceptable per one 
kilometer distance from the observer.  Thus, and error per distance tolerance of 
2.1 means that a triangle that is two kilometers from the observer, and within 
their field of view, must have a vertical discrepancy of at most 4.4 meters.  In 
addition, in both cases, we insist that the approximation be at full detail within the 
observers’ field of view to a distance of 700 meters. 
 
Allowing an error per distance tolerance of 1.0 within the observer’s field of view 
resulted in approximately 7.5 (Mount St. Helens) or 25 (Mount Rainier) times 
fewer triangles than are in the triangulation of the original data points.  With the 
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tolerance at 4.0, the decrease was by a factor of 26 (Mount St. Helens before 
May 18, 1980 eruption (figures 17 and 19) and after (figures 18 and 20), as well 
as the full detail versions of the same views. 
 

3.6 Comparison to Previous Work 
 
Structures, similar to the RTIN structure, that support multiple approximations 
with multiple levels of detail have been discovered independently by Lindstrom, 
Koller, Ribarsky, Hodges, Faust, Turner and Popeo. 
 
Lindstrom describes an interactive visualization system whose fundamental data 
structure is a hybrid between a RTIN and a sub-grid.  The surface is partitioned 
into rectangular blocks each of which is regularly sub-sampled (like a sub-grid) 
then, within each block, a bottom-up reduction process eliminates vertices (data 
points) that are sufficiently well-approximated, forming a RTIN-like surface of 
right-angled isosceles triangles.  Special care is taken at block boundaries to 
insure that no gaps are created.  Many details of the data structure are left open, 
but space usage of between six and 28 bytes per data point are quoted, including 
two bytes for the input elevation.  This compares favorably with our pure RTIN 
approach that requires between ten and 14 bytes per data point.  The difference 
in space usage between the two methods can be attributed to the fact that the 
RTIN hierarchy contains approximately four times as many triangles as data 
points.  We store an error measure (and neighbor information) for each triangle 
while Lindstrom stores a single error measure for each data point.  As a result, 
we can guarantee that our surface approximation is within a given tolerance (in 
our case, vertical discrepancy) of the original elevation model, while Lindstrom 
cannot.  It should be noted that both our ten byte version and Lindstrom ‘s six 
byte version compress the surface error from its full detail two-byte 
representation to a one-byte  representation, incurring a loss of precision. 
 
Popeo describes an RTIN-like tree structure as a special case of a more general 
framework of multi-resolution models.  He gives no experimental performance 
results for these structures, but does list, without detail, some of the operations, 
such as neighbor calculation, that such a structure should support. 
 

3.7 Conclusions 
 
In this report, we present a type of surface approximation that is a restricted form 
of a triangulated irregular network; it consists solely of right-angles isosceles 
triangles, and is therefore called a right-triangulated irregular network or RTIN.  
We describe how a RTIN may be stored efficiently, and yet still support 
operations such as traversal from triangle to adjacent triangle that are required 
by most applications operating on surfaces. 
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The performance of RTINs for single surface approximations is close to that of 
TINs but, as one might expect, the accuracy achieved by a RTIN as a function of 
the number of points in the approximation is less than the accuracy of a TIN.  
Rather more surprising and disappointing is that the performance of a RTIN is 
worse than a TIN as a function of the memory used by the approximation.  More 
efficient storage schemes for RTINs are possible and further research is needed 
to see if such RTIN representations can out-perform TINs. 
 
RTINs perform much better as a representation of many approximations in a 
hierarchy that supports multiple level-of-detail approximations.  The storage 
scheme we describe for a single surface approximation actually contains all 
coarser RTIN approximations.  We describe a method for extracting an 
appropriate approximation quickly and illustrate its use in a system, TopoVista, 
that permits interactive visualizations of USGS DEM data. 
 

4.0 Mirage NFS Router 
 
Mirage is a system that aggregates multiple NFS servers into a single, virtual 
NFS file server.  It is interposed between the NFS clients and servers, making 
the clients believe that they are communications with a single, large server.  
Mirage is an NFS router because it routes an NFS request from a client to the 
proper NFS server, and routes the reply back to the proper client.  Mirage also 
prevents Denial of Service (DoS) attacks on the NFS protocol, ensuring that all 
clients receive a fair share of the servers’ resources.  Mirage is designed to run 
on an IP router, providing virtualized NFS file service without affecting other 
network traffic.  Experiments with a Mirage prototype show that Mirage effectively 
virtualizes an NFS server using unmodified clients receive a fair share of the NFS 
server even during a DoS attack.  Mirage imposes and overhead of only 7% on a 
realistic NFS workload. 
 

4.1 Mirage Introduction 
 
Mirage provides NFS clients with the illusion that a collection of NFS servers is 
actually a single, virtual NFS server.  Mirage is not an NFS server.  It is an NFS 
router, which operates by routing client requests to the appropriate NFS servers, 
and routing replies back to the appropriate clients (Figure 21).  Mirage exports a 
set of file systems that is the union of the file systems exported by the NFS 
servers.  Clients mount a file system from the virtual server and access its 
contents as if Mirage were a real, physical NFS server.  Mirage is thus fully 
transparent to the clients and servers, allowing unmodified client and server 
implementations to use Mirage. 
 
An NFS file system is stored on a single NFS server.  NFS has no provision for 
spreading a file system over multiple servers.  Due to this limitation, as the 
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system scales to more users, the NFS server will become overloaded with the 
increased demand.  The system administrator has few solutions to this problem, 
including upgrading the NFS server or introducing an additional server and 
moving some files from the old server to the new.  The former solution is 
expensive and disruptive, while the second requires reconfiguring the clients to 
be aware of the new server.  Similarly, if an NFS server runs out of storage, the 
only way to gain additional space is to upgrade or add an additional server. 
 

 
 
Figure 21:  Mirage routes requests and replies between the NFS clients and 

the NFS servers. 
 
Mirage implements a virtual server abstraction that solves these system 
administration problems.  Clients perceive a single NFS server, unaware that it is 
actually a virtual server that is the aggregation of the real NFS servers.  Files and 
file systems can be moved from one NFS server to another without reconfiguring 
the clients.  Similarly, new NFS servers can be deployed without the clients’ 
knowledge.  All that is required is to reconfigure Mirage to include the new server 
in its visualization.  By hiding the server configuration details from the clients, 
Mirage allows NFS to scale to large numbers of servers without an overwhelming 
increase in system administration complexity. 
 
Mirage virtualizes an NFS server such that the IP address of the virtual server is 
the IP address of the Mirage router.  Client NFS requests are delivered to the 
Mirage router, which rewrites the requests and forwards them to the appropriate 
NFS server.  The clients are unaware that Mirage is a router, or that it is 
aggregating multiple NFS servers into a single virtual server.  No client 
modifications are necessary, which is advantageous because the NFS client 
protocol is usually implemented as an integral part of the host operating system 
on the client computer.  To modify the NFS implementation would require 
installing a custom kernel on the client computer, a task that is beyond the 
abilities of most end users, and inconvenient for most system administrators. 
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Mirage also supports unmodified servers.  Server modification is infeasible 
because many NFS servers are commercial products and contain proprietary 
code.  Commercial servers also provide additional features such as snapshots, 
which not only are complicated to implement, but protected by patents.  
Furthermore, since Mirage doesn’t require server modifications and exists 
outside of the server, it is always possible to access the NFS servers directly if 
suffers a failure or is otherwise unavailable.  
 
Mirage contains support for preventing DoS attacks on the NFS protocol.  A DoS 
attack is one in which a malicious client overwhelms the server with requests, 
preventing legitimate clients from accessing the server.  These attacks may not 
be detected by existing DoS mechanisms because they may generate very little 
network traffic, yet induce a high load on the server.  The request might be quite 
small, but require the NFS server a lot of effort to process.  Mirage mitigates DoS 
attacks by ensuring that each NFS client receives a fair share of the servers’ 
resources. 
 
Mirage is designed to run on a programmable network router.  It has a minimal 
amount of state, and is able to recover its state automatically after a crash.  
Mirage operates by re-writing packet contents based on table-lookups, and 
therefore introduces a minimal amount of overhead to the packet processing.  
We have developed two prototype implementations, one as a user-level NFS 
proxy, and another as a Linux kernel module.  The kernel module version has 
only a 7% slowdown of a large compilation benchmark over that of a simple IP 
router.  We believe this to be an acceptable overhead for the benefits that Mirage 
provides. 
 

4.2 NFS 
 
Mirage implements the NFS protocol, version 2.  The NFS protocol is based 
upon SUN Remote Procedure Call (RPC), and therefore uses a request/reply 
paradigm for communication between the clients and the servers.  The protocol 
uses handles to represent files, directories, and other file system objects.  An 
NFS handle is a 32-byte quantity that is generated by the server and opaque to 
the client.  The client receives the handle for the root directory of a file system 
when it mounts that file system.  The mount request includes the name of the file 
system to be mounted (the mount point).  The NFS server checks the mount 
request for the appropriate security and authentication and then issues a reply 
containing the handle for the root directory of the file system.  A client uses a 
handle to access the contents of its associated object, as well as to obtain 
handles for additional objects. 
 
An NFS client obtains a handle for a desired object in an iterative fashion.  It 
works its way through the desired pathname one component at a time, sending a 
lookup request to the server containing the handle of the current directory and 
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the name of the desired component to the server, and receiving back a handle 
for the component.  For example, to get a handle for the file /foo/bar, the client 
first sends a lookup request containing the handle for /foo and the string “bar”, 
and receives back the handle for /foo/bar.  The client then uses the handle to 
read and write the file.  Figure 22 illustrates the sequence of events required to 
read the file /home/fred/photo. 
 

 
  
 
Figure 22:  Sequence of NFS client requests and server replies to read the 

first 2048 bytes of /home/fred/photo. 
 
The use of handles in the NFS protocol poses two problems for Mirage.  First, 
the NFS server generates handles however it desires, as long as different 
objects have different handles.  Typically, the NFS server will encode information 
in the handle that identifies the location of the object in the server’s internal file 
system, improving access performance.  The handles are opaque to the client, 
however, so it is unaware of what information the handle holds.  Since Mirage 
virtualizes multiple NFS servers into a single server, it must ensure that different 
objects have different handles, even if the objects reside on different NFS 
servers.  Mirage has no control over how the servers create their handles, so 
there is no way for Mirage to ensure that the handles generated by the servers 
do not conflict.  As a result, Mirage must virtualize the NFS handle space by 
creating its own virtual handles and the physical handles used by the servers.  
This requires Mirage to maintain state about the mapping, increasing Mirage’s 
complexity. 
 
The second handle-related issue that affects Mirage is once a client has a 
handle, it may use the handle indefinitely to access the associated object.   
The client never needs to refresh the handle, therefore the server cannot 
subsequently change the handle contents.  If the server crashes and reboots, it 
may no longer have information about handles issued before the crash, causing 
it to return “stale handle” errors to the client.  This causes the client to re-lookup 
the handle, if possible.  Handle longevity is an issue for Mirage because it means 
that not only must Mirage maintain the mapping from a virtual handle to a 
physical handle indefinitely, but Mirage must also be able to reconstruct that 
mapping after a crash.  If Mirage did not reconstruct the mapping, then Mirage 
would have to return a “stale handle” error to the client, causing Mirage to no 
longer be transparent to the client. 
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4.3 Mirage 
 
Mirage addresses the NFS scalability problem by virtualizing multiple NFS 
servers as a single NFS server.  This virtualization is entirely transparent to the 
client and the servers, so the clients are not aware they are dealing with a 
collection of server.  There are several issues that Mirage must resolve, including 
the abstraction presented to the clients, how virtual handles are maintained and 
validated, and how Mirage recovers from crashes.  
 

4.4 Virtual Server Abstraction 
 
There are at least two possibilities for the virtual server abstraction presented by 
Mirage.  The simplest is that the set of mount points exported by the virtual 
server is the union of the sets of mount points exported by the underlying NFS 
servers (Figure 23).  
 

 
 
Figure 23: The set of mount points exported by the Mirage virtual server is 

the union of the sets of mount points exported by the individual NFS 
servers. 

 
When the Mirage router receives a mount request it forwards the request to all of 
the NFS servers that it virtualizes.  The server that exports the desired mount 
point will return its root handle, while the other servers return errors.  Mirage 
generates a virtual handle, associates it with the root handle provided by the 
server, and returns it to the client.  In this way the client can access the entire 
union of the mount points and believes it is communication with one larger 
server.  The advantage of this approach is that it requires a relatively small 
amount of state and processing on Mirage to implement.  The Mirage router must 
simply associate different virtual handles with different servers, so that requests 
are directed properly.  When a new virtual handle is created via a lookup on an 
existing handle, the new handle is associated with the same server as the 
existing handle. 
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The downside of this approach is that the sets of mount points exported by the 
servers must be disjoint.  Suppose two servers export mount points with the 
same name.  What should the virtual server export?  An alternative virtual server 
abstraction that addresses this issue is to export the union of the file system 
namespaces (Figure 24).  For mount points that overlap, the virtual server 
exports a single mount point whose name space merges the name spaces of the 
individual mount points.  When the client mounts an overlapping mount point, 
subsequent accesses to that file system must be directed to the proper NFS 
server on a case-by-case basis.  This approach allows for more flexibility in the 
organization of the underlying servers, but increases the virtual server’s 
complexity because it must map virtual handles to NFS servers individually.  If a 
new virtual handle is created using a lookup on an existing handle.  It is possible 
that the new handle should be associated with a different server than the existing 
handle.  Furthermore, this approach introduces semantic problems if there are 
name conflicts in the underlying file systems.  Suppose a directory on one NFS 
server has the same name as a file on another server.  What type of object 
should the clients see?  It isn’t obvious that there is a correct answer to this 
problem. 
 

 
 

Figure 24:  The virtual server exports file systems whose namespaces 
merge the namespaces of the underlying exported file systems. 

 
The current Mirage prototype uses the former approach of exporting the union of 
the mount points exported by the NFS servers.  This approach is simpler to 
implement, demonstrates most of the advantages of a virtual NFS server, and 
doesn’t have the semantic problem of naming conflicts within file namespaces.  
We are currently experimenting with the “union of file namespaces” approach 
and have a partial implementation in Mirage.  Its viability and value is an area of 
future work, however. 
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4.5 Virtual Handle Mapping 
 
One of the core functions of the Mirage router is to map between the file handles 
produced by the Mirage router and the file handles produced by the NFS servers 
(Figure 25).  The clients cannot be presented with the NFS server handles 
directly 
 
 

 
 
Figure 25:  The Mirage router maps between the virtual file handles used by 

the clients and the physical file handles used by the NFS servers. 
 
 
Because there is no guarantee that the NFS servers won’t generate the same 
handle for different objects.  For this reason, Mirage generates its own file 
handles that uniquely identify objects.  We refer to the file handles generated by 
Mirage as Virtual File Handles (VFH), and those generated by the NFS servers 
as Physical File Handles (PFH). Mirage stores the mapping between a VFH and 
a PFH in a memory-resident handle table.  When Mirage receives an NFS 
request from a client, Mirage looks up the VFH in the handle table to determine 
the proper server and PFH for the request.  Mirage then rewrites NFS requests 
using the PFH and forwards it to the server.  
 
Mirage must perform a reverse mapping on NFS replies.  Each PFH in a reply 
must be mapped to the appropriate VFH before the reply is forwarded to the 
client.  The most common reply to contain a PFH is the reply to the Lookup 
request that is used to resolve a file name into a file handle.  Mirage looks up the 
PFH contained in the reply in the handle table and rewrites the NFS reply with 
the correct VFH before forwarding the reply to the client.  If this is the first time 
the PFH has been used, then Mirage generates the new VFH and stores it in the 
handle table. 
 

 
 
 

Figure 26:  Format of a virtual file handle.  Offsets are in bytes. 
 
The handle table is a concern because it represents state on the Mirage router 
that consumes memory resources and must be recovered after a crash.  It also 
requires processing to look up handles in the table.  Mirage minimizes the state 
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and processing resources of the table by encoding information in the VFH 
(Figure 26).  The VFH is a 32-byte quantity that is opaque to the client, make all 
32 bytes available for Mirage’s use.  Mirage encodes the following information in 
the VFH: 
 
Virtual Inode Number (VIN):  Every object has a unique VIN. 
 
Server ID (SID):  The SID identifies the NFS server that stores the object 
associated with the VFH. 
 
Handle Version (HVER):  The handle version number allows multiple handles to 
be issued for the same object.  This is used by the DoS prevention mechanism to 
invalidate compromised handles. 
 
Physical Inode Number (PIN) and Physical File System ID (PFS):  The PIN is the 
inode number of the object as assigned by the NFS server, and the PFS is the 
file system ID on the server.  These two fields thereby uniquely identify an object 
within the physical file server and are used during recovery.  The triple (SID, PIN, 
PFS) uniquely identifies an object within all of Mirage. 
 
Mount Checksum (MCH):  The MCH is a 32-bit checksum of the name of the 
mount point associated with the VFH.  The MCH speeds up Mirage recovery. 
 
Handle Validation Checksum (HVC) is a cryptographically secure checksum that 
includes the other fields of the VFH and prevents clients from forging VFHs. 
 

4.6 Mirage Crash Recovery 
 
If a traditional IP router fails, the Internet routes packets around it.  This process 
is transparent and the communicating parties are not aware that their traffic has 
shifted from one router to another. 
 

4.7 Conclusion 
 
Mirage is an NFS router that provides a virtual NFS server abstraction, 
aggregating the resources of multiple unmodified NFS servers for use by 
unmodified clients.  Both the clients and the servers are unaware of Mirage’s 
presence, yet Mirage allows files and file systems to be moved between NFS 
servers, and new NFS servers to be deployed, without reconfiguring the clients.  
In this way it greatly simplifies NFS system administration. 
 
Mirage also protects against DoS attacks.  Mirage ensures that each client is 
given an equal share of the servers’ resources.  Malicious clients can waste 
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server resources, but never more than their share, and thus they are unable to 
prevent legitimate clients from accessing the NFS servers. 
 
Experiments with Mirage show that packet latencies are significantly higher than 
in a standard IP router on the same hardware, but that bandwidth is only reduced 
by 5-7%.  A realistic workload is only 7% slower using Mirage than using the NFS 
server directly.  Mirage’s low overhead, combined with the benefits of the 
virtualized server abstraction, demonstrate the viability of using an NFS router to 
build a scalable and versatile NFS system 
 
 


